How To Find Distance \( D \) Using The Distance Formula

    Back to Articles Open The Calculator    

Calculating the distance \( d \) an object travels when initial speed \( v_1 \), acceleration \( a \), and time \( t \) are given is essential in physics and engineering. This article will show you how to determine \( d \) using the distance formula, with detailed steps and examples.


Formula to Find Distance \( d \)

To find the distance \( d \) an object travels under constant acceleration, we use the equation:

\[ d = v_1 \cdot t + \dfrac{1}{2} \cdot a \cdot t^2 \]


Where:

  • \( d \) is the distance.
  • \( v_1 \) is the initial speed.
  • \( t \) is the time interval.
  • \( a \) is the linear acceleration.


Step-by-Step Calculation

Let's calculate the distance \( d \) with examples to illustrate how to use this formula.


Example 1: Calculate Distance \( d \)

Given:

  • Initial speed \( v_1 = 10 \, \text{m/s} \)
  • Acceleration \( a = 2 \, \text{m/s}^2 \)
  • Time \( t = 5 \, \text{s} \)


Step-by-Step Calculation:

Step 1: Identify the Given Values


Given:

  • Initial speed \( v_1 = 10 \, \text{m/s} \)
  • Acceleration \( a = 2 \, \text{m/s}^2 \)
  • Time \( t = 5 \, \text{s} \)


Step 2: Substitute the Values into the Distance Formula

Using the formula:

\[ d = v_1 \cdot t + \dfrac{1}{2} \cdot a \cdot t^2 \]


Substitute \( v_1 = 10 \, \text{m/s} \), \( a = 2 \, \text{m/s}^2 \), and \( t = 5 \, \text{s} \):

\[ d = 10 \cdot 5 + \dfrac{1}{2} \cdot 2 \cdot 5^2 \]


Step 3: Calculate the Distance Traveled by Initial Speed

Calculate \( v_1 \cdot t \):

\[ v_1 \cdot t = 10 \cdot 5 = 50 \, \text{m} \]


Step 4: Calculate the Distance Contributed by Acceleration

Calculate \( \dfrac{1}{2} \cdot a \cdot t^2 \):

\[ \dfrac{1}{2} \cdot 2 \cdot 5^2 = 1 \cdot 25 = 25 \, \text{m} \]


Step 5: Add Both Distances

Add \( 50 \, \text{m} \) and \( 25 \, \text{m} \):

\[ d = 50 + 25 = 75 \, \text{m} \]


Final Value

The total distance traveled is \( 75 \, \text{m} \).


Example 2:

Let’s break down another calculation for further clarity.


Given:

  • Initial speed \( v_1 = 0 \, \text{m/s} \)
  • Acceleration \( a = 4 \, \text{m/s}^2 \)
  • Time \( t = 3 \, \text{s} \)


Step-by-Step Calculation:

1. Substitute the Given Values into the Formula:

  \[ d = v_1 \cdot t + \dfrac{1}{2} \cdot a \cdot t^2 \]


  Given \( v_1 = 0 \, \text{m/s} \), \( a = 4 \, \text{m/s}^2 \), and \( t = 3 \, \text{s} \):

  \[ d = 0 \cdot 3 + \dfrac{1}{2} \cdot 4 \cdot 3^2 \]


2. Calculate the Distance Traveled by Initial Speed:

  Since \( v_1 = 0 \), \( v_1 \cdot t = 0 \).


3. Calculate the Distance Contributed by Acceleration:

  \[ \dfrac{1}{2} \cdot a \cdot t^2 = \dfrac{1}{2} \cdot 4 \cdot 9 = 2 \cdot 9 = 18 \, \text{m} \]


4. Sum Up Both Distances:

  \[ d = 0 + 18 = 18 \, \text{m} \]


Thus, the distance traveled is \( 18 \, \text{m} \).


Additional Example

Let’s consider another example to further illustrate:


Example 3: Calculate Distance with Non-Zero Initial Speed


Given:

  • Initial speed \( v_1 = 5 \, \text{m/s} \)
  • Acceleration \( a = 3 \, \text{m/s}^2 \)
  • Time \( t = 4 \, \text{s} \)


Calculation:

1. Substitute into the Formula:

  \[ d = v_1 \cdot t + \dfrac{1}{2} \cdot a \cdot t^2 \]


  Given \( v_1 = 5 \, \text{m/s} \), \( a = 3 \, \text{m/s}^2 \), and \( t = 4 \, \text{s} \):

  \[ d = 5 \cdot 4 + \dfrac{1}{2} \cdot 3 \cdot 4^2 \]


2. Calculate the Distance Traveled by Initial Speed:

  \[ v_1 \cdot t = 5 \cdot 4 = 20 \, \text{m} \]


3. Calculate the Distance Contributed by Acceleration:

  \[ \dfrac{1}{2} \cdot a \cdot t^2 = \dfrac{1}{2} \cdot 3 \cdot 16 = 1.5 \cdot 16 = 24 \, \text{m} \]


4. Sum Up Both Distances:

  \[ d = 20 + 24 = 44 \, \text{m} \]


Thus, the distance traveled is \( 44 \, \text{m} \).


Conclusion

Using the formula \( d = v_1 \cdot t + \dfrac{1}{2} \cdot a \cdot t^2 \), you can calculate the distance an object travels when initial speed, acceleration, and time are known. This method is fundamental for analyzing motion in physics, engineering, and various practical applications.

Report
Reply

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.