How To Find The Volume Of A Spherical Cap

    Back to Articles Open The Calculator    

Calculating the volume of a spherical cap is a common problem in geometry. A spherical cap is a portion of a sphere cut off by a plane. This article will explain the steps to find the volume of a spherical cap using a straightforward formula, including an example calculation.


Volume of a Spherical Cap Formula

To calculate the volume (\( V \)) of a spherical cap, you can use the following formula:


\[ V = \dfrac{1}{3} \cdot \pi \cdot r^3 \cdot \left( 2 - 3 \cdot \sin(\theta) + \sin^3(\theta) \right)\]


Where:

  • \( r \) is the radius of the sphere.
  • \( \theta \) is the angle (in radians) that the cap subtends at the center of the sphere.


Explanation of the Formula

  • The term \( \dfrac{1}{3} \) is a constant that helps scale the volume of the spherical cap.
  • \( \pi \) is a mathematical constant approximately equal to 3.14159.
  • \( r^3 \) represents the cube of the radius, which scales the volume based on the size of the sphere.
  • The expression \( 2 - 3 \cdot \sin(\theta) + \sin^3(\theta) \) adjusts the volume based on the angle subtended by the cap.


Step-by-Step Calculation

Let's go through an example to demonstrate how to use this formula.


Example: Calculating the Volume of a Spherical Cap

1. Identify the given values:

  • Radius of the sphere (\( r \)) = 5 units
  • Angle subtended by the cap (\( \theta \)) = \( \dfrac{\pi}{6} \) radians (30 degrees)


2. Substitute the values into the volume formula:

\[ V = \dfrac{1}{3} \cdot \pi \cdot 5^3 \cdot \left( 2 - 3 \cdot \sin\left( \dfrac{\pi}{6} \right) + \sin^3\left( \dfrac{\pi}{6} \right) \right)\]


3. Calculate the cube of the radius:

\[ 5^3 = 125 \]


4. Substitute the value and simplify:

\[ V = \dfrac{1}{3} \cdot \pi \cdot 125 \cdot \left( 2 - 3 \cdot \sin\left( \dfrac{\pi}{6} \right) + \sin^3\left( \dfrac{\pi}{6} \right) \right)\]


5. Evaluate the trigonometric functions:

\[ \sin\left( \dfrac{\pi}{6} \right) = \dfrac{1}{2} \]


\[ \sin^3\left( \dfrac{\pi}{6} \right) = \left( \dfrac{1}{2} \right)^3 = \dfrac{1}{8}\]


6. Substitute these values back into the expression:

\[ V = \dfrac{1}{3} \cdot \pi \cdot 125 \cdot \left( 2 - 3 \cdot \dfrac{1}{2} + \dfrac{1}{8} \right)\]


7. Simplify the expression inside the parentheses:

\[ 2 - \dfrac{3}{2} + \dfrac{1}{8} = \dfrac{16}{8} - \dfrac{12}{8} + \dfrac{1}{8} = \dfrac{5}{8}\]


8. Substitute and simplify:

\[ V = \dfrac{1}{3} \cdot \pi \cdot 125 \cdot \dfrac{5}{8}\]


9. Multiply the terms:

\[ V = \dfrac{1}{3} \cdot \pi \cdot \dfrac{625}{8}\]


\[ V = \dfrac{625 \cdot \pi}{24}\]


10. Calculate the final value using \( \pi \approx 3.14159 \):

\[ V \approx \dfrac{625 \cdot 3.14159}{24} \]


\[ V \approx 81.68 \text{ cubic units}\]


Final Volume

The volume of a spherical cap with a radius of 5 units and an angle of \( \dfrac{\pi}{6} \) radians is approximately 81.68 cubic units.

Report
Reply

Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.