Convert (gram • meter) / square second to kip

Learn how to convert 1 (gram • meter) / square second to kip step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{gram \times meter}{square \text{ } second}\right)={\color{rgb(20,165,174)} x}\left(kip\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(newton\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{gram \times meter}{square \text{ } second}\right) = {\color{rgb(89,182,91)} 10^{-3}\left(newton\right)} = {\color{rgb(89,182,91)} 10^{-3}\left(N\right)}$$
$$\text{Right side: 1.0 } \left(kip\right) = {\color{rgb(125,164,120)} 4448.2216152605\left(newton\right)} = {\color{rgb(125,164,120)} 4448.2216152605\left(N\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{gram \times meter}{square \text{ } second}\right)={\color{rgb(20,165,174)} x}\left(kip\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-3}} \times {\color{rgb(89,182,91)} \left(newton\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 4448.2216152605}} \times {\color{rgb(125,164,120)} \left(newton\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{-3}} \cdot {\color{rgb(89,182,91)} \left(N\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 4448.2216152605} \cdot {\color{rgb(125,164,120)} \left(N\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-3}} \cdot {\color{rgb(89,182,91)} \cancel{\left(N\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 4448.2216152605} \times {\color{rgb(125,164,120)} \cancel{\left(N\right)}}$$
$$\text{Conversion Equation}$$
$$10^{-3} = {\color{rgb(20,165,174)} x} \times 4448.2216152605$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 4448.2216152605 = 10^{-3}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{4448.2216152605}\right)$$
$${\color{rgb(20,165,174)} x} \times 4448.2216152605 \times \dfrac{1.0}{4448.2216152605} = 10^{-3} \times \dfrac{1.0}{4448.2216152605}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{4448.2216152605}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{4448.2216152605}}} = 10^{-3} \times \dfrac{1.0}{4448.2216152605}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-3}}{4448.2216152605}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000002248\approx2.2481 \times 10^{-7}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{gram \times meter}{square \text{ } second}\right)\approx{\color{rgb(20,165,174)} 2.2481 \times 10^{-7}}\left(kip\right)$$