## Calculation Breakdown

Set up the equation
$$1.0\left(abfarad\right)={\color{rgb(20,165,174)} x}\left(farad\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(farad\right)$$
$$\text{Left side: 1.0 } \left(abfarad\right) = {\color{rgb(89,182,91)} 10^{9}\left(farad\right)} = {\color{rgb(89,182,91)} 10^{9}\left(F\right)}$$
$$\text{Right side: 1.0 } \left(farad\right) = {\color{rgb(125,164,120)} 1.0\left(farad\right)} = {\color{rgb(125,164,120)} 1.0\left(F\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(abfarad\right)={\color{rgb(20,165,174)} x}\left(farad\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{9}} \times {\color{rgb(89,182,91)} \left(farad\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.0}} \times {\color{rgb(125,164,120)} \left(farad\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{9}} \cdot {\color{rgb(89,182,91)} \left(F\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.0} \cdot {\color{rgb(125,164,120)} \left(F\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{9}} \cdot {\color{rgb(89,182,91)} \cancel{\left(F\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.0} \times {\color{rgb(125,164,120)} \cancel{\left(F\right)}}$$
$$\text{Conversion Equation}$$
$$10^{9} = {\color{rgb(20,165,174)} x} \times 1.0$$
$$\text{Simplify}$$
$$10^{9} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 10^{9}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 1000000000 = 1 \times 10^{9}$$
$$\text{Conversion Equation}$$
$$1.0\left(abfarad\right) = {\color{rgb(20,165,174)} 1 \times 10^{9}}\left(farad\right)$$