# Convert angular mil to cycle

Learn how to convert 1 angular mil to cycle step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(angular \text{ } mil\right)={\color{rgb(20,165,174)} x}\left(cycle\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(radian\right)$$
$$\text{Left side: 1.0 } \left(angular \text{ } mil\right) = {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}\left(radian\right)} = {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}\left(rad\right)}$$
$$\text{Right side: 1.0 } \left(cycle\right) = {\color{rgb(125,164,120)} 2.0 \times π\left(radian\right)} = {\color{rgb(125,164,120)} 2.0 \times π\left(rad\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(angular \text{ } mil\right)={\color{rgb(20,165,174)} x}\left(cycle\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}} \times {\color{rgb(89,182,91)} \left(radian\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.0 \times π}} \times {\color{rgb(125,164,120)} \left(radian\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \left(rad\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.0 \times π} \cdot {\color{rgb(125,164,120)} \left(rad\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 2.0 \times \dfrac{π}{6.4 \times 10^{3}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(rad\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.0 \times π} \times {\color{rgb(125,164,120)} \cancel{\left(rad\right)}}$$
$$\text{Conversion Equation}$$
$$2.0 \times \dfrac{π}{6.4 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times 2.0 \times π$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{{\color{rgb(255,204,153)} \cancel{π}} \times {\color{rgb(99,194,222)} \cancel{2.0}}}{6.4 \times 10^{3}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{π}} \times {\color{rgb(99,194,222)} \cancel{2.0}}$$
$$\text{Simplify}$$
$$\dfrac{1.0}{6.4 \times 10^{3}} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{6.4 \times 10^{3}}$$
Rewrite equation
$$\dfrac{1.0}{10^{3}}\text{ can be rewritten to }10^{-3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-3}}{6.4}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 0.00015625 = 1.5625 \times 10^{-4}$$
$$\text{Conversion Equation}$$
$$1.0\left(angular \text{ } mil\right) = {\color{rgb(20,165,174)} 1.5625 \times 10^{-4}}\left(cycle\right)$$