# Convert barrel to peck

Learn how to convert 1 barrel to peck step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(barrel\right)={\color{rgb(20,165,174)} x}\left(peck\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(barrel\right) = {\color{rgb(89,182,91)} 0.16365924\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 0.16365924\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(peck\right) = {\color{rgb(125,164,120)} 9.09218 \times 10^{-3}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 9.09218 \times 10^{-3}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(barrel\right)={\color{rgb(20,165,174)} x}\left(peck\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 0.16365924} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 9.09218 \times 10^{-3}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 0.16365924} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 9.09218 \times 10^{-3}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 0.16365924} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 9.09218 \times 10^{-3}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$0.16365924 = {\color{rgb(20,165,174)} x} \times 9.09218 \times 10^{-3}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 9.09218 \times 10^{-3} = 0.16365924$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{9.09218 \times 10^{-3}}\right)$$
$${\color{rgb(20,165,174)} x} \times 9.09218 \times 10^{-3} \times \dfrac{1.0}{9.09218 \times 10^{-3}} = 0.16365924 \times \dfrac{1.0}{9.09218 \times 10^{-3}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{9.09218}} \times {\color{rgb(99,194,222)} \cancel{10^{-3}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{9.09218}} \times {\color{rgb(99,194,222)} \cancel{10^{-3}}}} = 0.16365924 \times \dfrac{1.0}{9.09218 \times 10^{-3}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{0.16365924}{9.09218 \times 10^{-3}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-3}}\text{ can be rewritten to }10^{3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{3} \times 0.16365924}{9.09218}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 18$$
$$\text{Conversion Equation}$$
$$1.0\left(barrel\right) = {\color{rgb(20,165,174)} 18}\left(peck\right)$$