Learn how to convert 1 binary radian to radian step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(binary \text{ } radian\right)={\color{rgb(20,165,174)} x}\left(radian\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(radian\right)$$
$$\text{Left side: 1.0 } \left(binary \text{ } radian\right) = {\color{rgb(89,182,91)} \dfrac{π}{128.0}\left(radian\right)} = {\color{rgb(89,182,91)} \dfrac{π}{128.0}\left(rad\right)}$$
$$\text{Right side: 1.0 } \left(radian\right) = {\color{rgb(125,164,120)} 1.0\left(radian\right)} = {\color{rgb(125,164,120)} 1.0\left(rad\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(binary \text{ } radian\right)={\color{rgb(20,165,174)} x}\left(radian\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{128.0}} \times {\color{rgb(89,182,91)} \left(radian\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.0}} \times {\color{rgb(125,164,120)} \left(radian\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{π}{128.0}} \cdot {\color{rgb(89,182,91)} \left(rad\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.0} \cdot {\color{rgb(125,164,120)} \left(rad\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{128.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(rad\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.0} \times {\color{rgb(125,164,120)} \cancel{\left(rad\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{π}{128.0} = {\color{rgb(20,165,174)} x} \times 1.0$$
$$\text{Simplify}$$
$$\dfrac{π}{128.0} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = \dfrac{π}{128.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0245436926\approx2.4544 \times 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(binary \text{ } radian\right)\approx{\color{rgb(20,165,174)} 2.4544 \times 10^{-2}}\left(radian\right)$$