# Convert bushel to cubic fathom

Learn how to convert 1 bushel to cubic fathom step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(bushel\right)={\color{rgb(20,165,174)} x}\left(cubic \text{ } fathom\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(bushel\right) = {\color{rgb(89,182,91)} 3.636872 \times 10^{-2}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 3.636872 \times 10^{-2}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(cubic \text{ } fathom\right) = {\color{rgb(125,164,120)} 6.116438863872\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 6.116438863872\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(bushel\right)={\color{rgb(20,165,174)} x}\left(cubic \text{ } fathom\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3.636872 \times 10^{-2}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 6.116438863872}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3.636872 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 6.116438863872} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3.636872 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 6.116438863872} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$3.636872 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times 6.116438863872$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 6.116438863872 = 3.636872 \times 10^{-2}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{6.116438863872}\right)$$
$${\color{rgb(20,165,174)} x} \times 6.116438863872 \times \dfrac{1.0}{6.116438863872} = 3.636872 \times 10^{-2} \times \dfrac{1.0}{6.116438863872}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{6.116438863872}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{6.116438863872}}} = 3.636872 \times 10^{-2} \times \dfrac{1.0}{6.116438863872}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3.636872 \times 10^{-2}}{6.116438863872}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0059460612\approx5.9461 \times 10^{-3}$$
$$\text{Conversion Equation}$$
$$1.0\left(bushel\right)\approx{\color{rgb(20,165,174)} 5.9461 \times 10^{-3}}\left(cubic \text{ } fathom\right)$$