# Convert butt to dash

Learn how to convert 1 butt to dash step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(butt\right)={\color{rgb(20,165,174)} x}\left(dash\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(butt\right) = {\color{rgb(89,182,91)} 4.76961884784 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 4.76961884784 \times 10^{-1}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(dash\right) = {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(butt\right)={\color{rgb(20,165,174)} x}\left(dash\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 4.76961884784 \times 10^{-1}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 4.76961884784 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 4.76961884784 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$4.76961884784 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times 3.08057599609375 \times 10^{-7}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$4.76961884784 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}} = {\color{rgb(20,165,174)} x} \times 3.08057599609375 \times {\color{rgb(255,204,153)} \cancelto{10^{-6}}{10^{-7}}}$$
$$\text{Simplify}$$
$$4.76961884784 = {\color{rgb(20,165,174)} x} \times 3.08057599609375 \times 10^{-6}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 3.08057599609375 \times 10^{-6} = 4.76961884784$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{3.08057599609375 \times 10^{-6}}\right)$$
$${\color{rgb(20,165,174)} x} \times 3.08057599609375 \times 10^{-6} \times \dfrac{1.0}{3.08057599609375 \times 10^{-6}} = 4.76961884784 \times \dfrac{1.0}{3.08057599609375 \times 10^{-6}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.08057599609375}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.08057599609375}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}}} = 4.76961884784 \times \dfrac{1.0}{3.08057599609375 \times 10^{-6}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{4.76961884784}{3.08057599609375 \times 10^{-6}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-6}}\text{ can be rewritten to }10^{6}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{6} \times 4.76961884784}{3.08057599609375}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 1548288\approx1.5483 \times 10^{6}$$
$$\text{Conversion Equation}$$
$$1.0\left(butt\right)\approx{\color{rgb(20,165,174)} 1.5483 \times 10^{6}}\left(dash\right)$$