# Convert carat to chalder

Learn how to convert 1 carat to chalder step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(carat\right)={\color{rgb(20,165,174)} x}\left(chalder\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(carat\right) = {\color{rgb(89,182,91)} 2.5919564 \times 10^{-4}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 2.5919564 \times 10^{-4}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(chalder\right) = {\color{rgb(125,164,120)} 2692.52\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 2692.52\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(carat\right)={\color{rgb(20,165,174)} x}\left(chalder\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.5919564 \times 10^{-4}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2692.52}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.5919564 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2692.52} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 2.5919564 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2692.52} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$2.5919564 \times 10^{-4} = {\color{rgb(20,165,174)} x} \times 2692.52$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2692.52 = 2.5919564 \times 10^{-4}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2692.52}\right)$$
$${\color{rgb(20,165,174)} x} \times 2692.52 \times \dfrac{1.0}{2692.52} = 2.5919564 \times 10^{-4} \times \dfrac{1.0}{2692.52}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2692.52}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2692.52}}} = 2.5919564 \times 10^{-4} \times \dfrac{1.0}{2692.52}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.5919564 \times 10^{-4}}{2692.52}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000000963\approx9.6265 \times 10^{-8}$$
$$\text{Conversion Equation}$$
$$1.0\left(carat\right)\approx{\color{rgb(20,165,174)} 9.6265 \times 10^{-8}}\left(chalder\right)$$