Convert cho(町) to point

Learn how to convert 1 cho(町) to point step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(cho(町)\right)={\color{rgb(20,165,174)} x}\left(point\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(cho(町)\right) = {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}\left(meter\right)} = {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(point\right) = {\color{rgb(125,164,120)} 2.54 \times 10^{-5}\left(meter\right)} = {\color{rgb(125,164,120)} 2.54 \times 10^{-5}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(cho(町)\right)={\color{rgb(20,165,174)} x}\left(point\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.54 \times 10^{-5}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.54 \times 10^{-5}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{1.2 \times 10^{3}}{11.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.54 \times 10^{-5}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{1.2 \times 10^{3}}{11.0} = {\color{rgb(20,165,174)} x} \times 2.54 \times 10^{-5}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2.54 \times 10^{-5} = \dfrac{1.2 \times 10^{3}}{11.0}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2.54 \times 10^{-5}}\right)$$
$${\color{rgb(20,165,174)} x} \times 2.54 \times 10^{-5} \times \dfrac{1.0}{2.54 \times 10^{-5}} = \dfrac{1.2 \times 10^{3}}{11.0} \times \dfrac{1.0}{2.54 \times 10^{-5}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.54}} \times {\color{rgb(99,194,222)} \cancel{10^{-5}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.54}} \times {\color{rgb(99,194,222)} \cancel{10^{-5}}}} = \dfrac{1.2 \times 10^{3} \times 1.0}{11.0 \times 2.54 \times 10^{-5}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.2 \times 10^{3}}{11.0 \times 2.54 \times 10^{-5}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-5}}\text{ can be rewritten to }10^{5}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{5} \times 1.2 \times 10^{3}}{11.0 \times 2.54}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{8} \times 1.2}{11.0 \times 2.54}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx4294917.6807\approx4.2949 \times 10^{6}$$
$$\text{Conversion Equation}$$
$$1.0\left(cho(町)\right)\approx{\color{rgb(20,165,174)} 4.2949 \times 10^{6}}\left(point\right)$$