# Convert coomb to sho(升)

Learn how to convert 1 coomb to sho(升) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(coomb\right)={\color{rgb(20,165,174)} x}\left(sho(升)\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(coomb\right) = {\color{rgb(89,182,91)} 1.4547488 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 1.4547488 \times 10^{-1}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(sho(升)\right) = {\color{rgb(125,164,120)} \dfrac{2.401}{1.331 \times 10^{3}}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} \dfrac{2.401}{1.331 \times 10^{3}}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(coomb\right)={\color{rgb(20,165,174)} x}\left(sho(升)\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.4547488 \times 10^{-1}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{2.401}{1.331 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.4547488 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{2.401}{1.331 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.4547488 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{2.401}{1.331 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$1.4547488 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times \dfrac{2.401}{1.331 \times 10^{3}}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{2.401}{1.331 \times 10^{3}} = 1.4547488 \times 10^{-1}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.331 \times 10^{3}}{2.401}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{2.401}{1.331 \times 10^{3}} \times \dfrac{1.331 \times 10^{3}}{2.401} = 1.4547488 \times 10^{-1} \times \dfrac{1.331 \times 10^{3}}{2.401}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{2.401}} \times {\color{rgb(99,194,222)} \cancel{1.331}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}}}{{\color{rgb(99,194,222)} \cancel{1.331}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}} \times {\color{rgb(255,204,153)} \cancel{2.401}}} = 1.4547488 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}} \times \dfrac{1.331 \times {\color{rgb(255,204,153)} \cancelto{10^{2}}{10^{3}}}}{2.401}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.4547488 \times 1.331 \times 10^{2}}{2.401}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx80.644342057\approx80.6443$$
$$\text{Conversion Equation}$$
$$1.0\left(coomb\right)\approx{\color{rgb(20,165,174)} 80.6443}\left(sho(升)\right)$$