Convert cubic foot to tablespoon

Learn how to convert 1 cubic foot to tablespoon step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(cubic \text{ } foot\right)={\color{rgb(20,165,174)} x}\left(tablespoon\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(cubic \text{ } foot\right) = {\color{rgb(89,182,91)} 2.8316846592 \times 10^{-2}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 2.8316846592 \times 10^{-2}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(tablespoon\right) = {\color{rgb(125,164,120)} 1.77581640625 \times 10^{-5}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 1.77581640625 \times 10^{-5}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(cubic \text{ } foot\right)={\color{rgb(20,165,174)} x}\left(tablespoon\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.8316846592 \times 10^{-2}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.77581640625 \times 10^{-5}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.8316846592 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.77581640625 \times 10^{-5}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 2.8316846592 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.77581640625 \times 10^{-5}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$2.8316846592 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times 1.77581640625 \times 10^{-5}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$2.8316846592 \times {\color{rgb(255,204,153)} \cancel{10^{-2}}} = {\color{rgb(20,165,174)} x} \times 1.77581640625 \times {\color{rgb(255,204,153)} \cancelto{10^{-3}}{10^{-5}}}$$
$$\text{Simplify}$$
$$2.8316846592 = {\color{rgb(20,165,174)} x} \times 1.77581640625 \times 10^{-3}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.77581640625 \times 10^{-3} = 2.8316846592$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.77581640625 \times 10^{-3}}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.77581640625 \times 10^{-3} \times \dfrac{1.0}{1.77581640625 \times 10^{-3}} = 2.8316846592 \times \dfrac{1.0}{1.77581640625 \times 10^{-3}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.77581640625}} \times {\color{rgb(99,194,222)} \cancel{10^{-3}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.77581640625}} \times {\color{rgb(99,194,222)} \cancel{10^{-3}}}} = 2.8316846592 \times \dfrac{1.0}{1.77581640625 \times 10^{-3}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.8316846592}{1.77581640625 \times 10^{-3}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-3}}\text{ can be rewritten to }10^{3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{3} \times 2.8316846592}{1.77581640625}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx1594.5818775\approx1.5946 \times 10^{3}$$
$$\text{Conversion Equation}$$
$$1.0\left(cubic \text{ } foot\right)\approx{\color{rgb(20,165,174)} 1.5946 \times 10^{3}}\left(tablespoon\right)$$