# Convert cun(公寸) to em

Learn how to convert 1 cun(公寸) to em step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(cun(公寸)\right)={\color{rgb(20,165,174)} x}\left(em\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(cun(公寸)\right) = {\color{rgb(89,182,91)} 10^{-1}\left(meter\right)} = {\color{rgb(89,182,91)} 10^{-1}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(em\right) = {\color{rgb(125,164,120)} \dfrac{1.0}{2835.0}\left(meter\right)} = {\color{rgb(125,164,120)} \dfrac{1.0}{2835.0}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(cun(公寸)\right)={\color{rgb(20,165,174)} x}\left(em\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-1}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1.0}{2835.0}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{-1}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1.0}{2835.0}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-1}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1.0}{2835.0}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$10^{-1} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2835.0}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2835.0} = 10^{-1}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{2835.0}{1.0}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{2835.0} \times \dfrac{2835.0}{1.0} = 10^{-1} \times \dfrac{2835.0}{1.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{2835.0}}}{{\color{rgb(99,194,222)} \cancel{2835.0}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = 10^{-1} \times \dfrac{2835.0}{1.0}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = 10^{-1} \times 2835.0$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 283.5 = 2.835 \times 10^{2}$$
$$\text{Conversion Equation}$$
$$1.0\left(cun(公寸)\right) = {\color{rgb(20,165,174)} 2.835 \times 10^{2}}\left(em\right)$$