# Convert cun(公寸) to twip

Learn how to convert 1 cun(公寸) to twip step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(cun(公寸)\right)={\color{rgb(20,165,174)} x}\left(twip\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(cun(公寸)\right) = {\color{rgb(89,182,91)} 10^{-1}\left(meter\right)} = {\color{rgb(89,182,91)} 10^{-1}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(twip\right) = {\color{rgb(125,164,120)} 1.76388888888889 \times 10^{-5}\left(meter\right)} = {\color{rgb(125,164,120)} 1.76388888888889 \times 10^{-5}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(cun(公寸)\right)={\color{rgb(20,165,174)} x}\left(twip\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-1}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.76388888888889 \times 10^{-5}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{-1}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.76388888888889 \times 10^{-5}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{-1}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.76388888888889 \times 10^{-5}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$10^{-1} = {\color{rgb(20,165,174)} x} \times 1.76388888888889 \times 10^{-5}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{10^{-1}}} = {\color{rgb(20,165,174)} x} \times 1.76388888888889 \times {\color{rgb(255,204,153)} \cancelto{10^{-4}}{10^{-5}}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x} \times 1.76388888888889 \times 10^{-4}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.76388888888889 \times 10^{-4} = 1.0$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.76388888888889 \times 10^{-4}}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.76388888888889 \times 10^{-4} \times \dfrac{1.0}{1.76388888888889 \times 10^{-4}} = \times \dfrac{1.0}{1.76388888888889 \times 10^{-4}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.76388888888889}} \times {\color{rgb(99,194,222)} \cancel{10^{-4}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.76388888888889}} \times {\color{rgb(99,194,222)} \cancel{10^{-4}}}} = \dfrac{1.0}{1.76388888888889 \times 10^{-4}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{1.76388888888889 \times 10^{-4}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-4}}\text{ can be rewritten to }10^{4}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{4}}{1.76388888888889}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx5669.2913386\approx5.6693 \times 10^{3}$$
$$\text{Conversion Equation}$$
$$1.0\left(cun(公寸)\right)\approx{\color{rgb(20,165,174)} 5.6693 \times 10^{3}}\left(twip\right)$$