# Convert dalton to jin(市斤)

Learn how to convert 1 dalton to jin(市斤) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(dalton\right)={\color{rgb(20,165,174)} x}\left(jin(市斤)\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(dalton\right) = {\color{rgb(89,182,91)} 1.6605390666 \times 10^{-27}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 1.6605390666 \times 10^{-27}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(jin(市斤)\right) = {\color{rgb(125,164,120)} 5.0 \times 10^{-1}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 5.0 \times 10^{-1}\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(dalton\right)={\color{rgb(20,165,174)} x}\left(jin(市斤)\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.6605390666 \times 10^{-27}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 5.0 \times 10^{-1}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.6605390666 \times 10^{-27}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 5.0 \times 10^{-1}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.6605390666 \times 10^{-27}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 5.0 \times 10^{-1}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$1.6605390666 \times 10^{-27} = {\color{rgb(20,165,174)} x} \times 5.0 \times 10^{-1}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$1.6605390666 \times {\color{rgb(255,204,153)} \cancelto{10^{-26}}{10^{-27}}} = {\color{rgb(20,165,174)} x} \times 5.0 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}}$$
$$\text{Simplify}$$
$$1.6605390666 \times 10^{-26} = {\color{rgb(20,165,174)} x} \times 5.0$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 5.0 = 1.6605390666 \times 10^{-26}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{5.0}\right)$$
$${\color{rgb(20,165,174)} x} \times 5.0 \times \dfrac{1.0}{5.0} = 1.6605390666 \times 10^{-26} \times \dfrac{1.0}{5.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{5.0}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{5.0}}} = 1.6605390666 \times 10^{-26} \times \dfrac{1.0}{5.0}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.6605390666 \times 10^{-26}}{5.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx3.3210781332 \times 10^{-27}\approx3.3211 \times 10^{-27}$$
$$\text{Conversion Equation}$$
$$1.0\left(dalton\right)\approx{\color{rgb(20,165,174)} 3.3211 \times 10^{-27}}\left(jin(市斤)\right)$$