# Convert dash to shot

Learn how to convert 1 dash to shot step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(dash\right)={\color{rgb(20,165,174)} x}\left(shot\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(dash\right) = {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(shot\right) = {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(dash\right)={\color{rgb(20,165,174)} x}\left(shot\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3.69961751302083 \times 10^{-7}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.95735295625 \times 10^{-5}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$3.69961751302083 \times 10^{-7} = {\color{rgb(20,165,174)} x} \times 2.95735295625 \times 10^{-5}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$3.69961751302083 \times {\color{rgb(255,204,153)} \cancelto{10^{-2}}{10^{-7}}} = {\color{rgb(20,165,174)} x} \times 2.95735295625 \times {\color{rgb(255,204,153)} \cancel{10^{-5}}}$$
$$\text{Simplify}$$
$$3.69961751302083 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times 2.95735295625$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2.95735295625 = 3.69961751302083 \times 10^{-2}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2.95735295625}\right)$$
$${\color{rgb(20,165,174)} x} \times 2.95735295625 \times \dfrac{1.0}{2.95735295625} = 3.69961751302083 \times 10^{-2} \times \dfrac{1.0}{2.95735295625}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.95735295625}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.95735295625}}} = 3.69961751302083 \times 10^{-2} \times \dfrac{1.0}{2.95735295625}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3.69961751302083 \times 10^{-2}}{2.95735295625}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0125098951\approx1.251 \times 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(dash\right)\approx{\color{rgb(20,165,174)} 1.251 \times 10^{-2}}\left(shot\right)$$