Convert dram to quarter

Learn how to convert 1 dram to quarter step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(quarter\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(dram\right) = {\color{rgb(89,182,91)} 1.7718451953125 \times 10^{-3}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 1.7718451953125 \times 10^{-3}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(quarter\right) = {\color{rgb(125,164,120)} 254.0117272\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 254.0117272\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(quarter\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.7718451953125 \times 10^{-3}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 254.0117272}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.7718451953125 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 254.0117272} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.7718451953125 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 254.0117272} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$1.7718451953125 \times 10^{-3} = {\color{rgb(20,165,174)} x} \times 254.0117272$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 254.0117272 = 1.7718451953125 \times 10^{-3}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{254.0117272}\right)$$
$${\color{rgb(20,165,174)} x} \times 254.0117272 \times \dfrac{1.0}{254.0117272} = 1.7718451953125 \times 10^{-3} \times \dfrac{1.0}{254.0117272}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{254.0117272}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{254.0117272}}} = 1.7718451953125 \times 10^{-3} \times \dfrac{1.0}{254.0117272}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.7718451953125 \times 10^{-3}}{254.0117272}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000069754\approx6.9754 \times 10^{-6}$$
$$\text{Conversion Equation}$$
$$1.0\left(dram\right)\approx{\color{rgb(20,165,174)} 6.9754 \times 10^{-6}}\left(quarter\right)$$