Convert dram to quintal

Learn how to convert 1 dram to quintal step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(quintal\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(dram\right) = {\color{rgb(89,182,91)} 3.41 \times 10^{-3}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 3.41 \times 10^{-3}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(quintal\right) = {\color{rgb(125,164,120)} 45.36\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 45.36\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(quintal\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3.41 \times 10^{-3}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 45.36}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3.41 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 45.36} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3.41 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 45.36} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$3.41 \times 10^{-3} = {\color{rgb(20,165,174)} x} \times 45.36$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 45.36 = 3.41 \times 10^{-3}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{45.36}\right)$$
$${\color{rgb(20,165,174)} x} \times 45.36 \times \dfrac{1.0}{45.36} = 3.41 \times 10^{-3} \times \dfrac{1.0}{45.36}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{45.36}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{45.36}}} = 3.41 \times 10^{-3} \times \dfrac{1.0}{45.36}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3.41 \times 10^{-3}}{45.36}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000751764\approx7.5176 \times 10^{-5}$$
$$\text{Conversion Equation}$$
$$1.0\left(dram\right)\approx{\color{rgb(20,165,174)} 7.5176 \times 10^{-5}}\left(quintal\right)$$