# Convert dram to rebah

Learn how to convert 1 dram to rebah step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(rebah\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(dram\right) = {\color{rgb(89,182,91)} 3.8879346 \times 10^{-3}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 3.8879346 \times 10^{-3}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(rebah\right) = {\color{rgb(125,164,120)} 4.08233133 \times 10^{-3}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 4.08233133 \times 10^{-3}\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(dram\right)={\color{rgb(20,165,174)} x}\left(rebah\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3.8879346 \times 10^{-3}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 4.08233133 \times 10^{-3}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3.8879346 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 4.08233133 \times 10^{-3}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3.8879346 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 4.08233133 \times 10^{-3}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$3.8879346 \times 10^{-3} = {\color{rgb(20,165,174)} x} \times 4.08233133 \times 10^{-3}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$3.8879346 \times {\color{rgb(255,204,153)} \cancel{10^{-3}}} = {\color{rgb(20,165,174)} x} \times 4.08233133 \times {\color{rgb(255,204,153)} \cancel{10^{-3}}}$$
$$\text{Simplify}$$
$$3.8879346 = {\color{rgb(20,165,174)} x} \times 4.08233133$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 4.08233133 = 3.8879346$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{4.08233133}\right)$$
$${\color{rgb(20,165,174)} x} \times 4.08233133 \times \dfrac{1.0}{4.08233133} = 3.8879346 \times \dfrac{1.0}{4.08233133}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{4.08233133}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{4.08233133}}} = 3.8879346 \times \dfrac{1.0}{4.08233133}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3.8879346}{4.08233133}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.9523809524\approx9.5238 \times 10^{-1}$$
$$\text{Conversion Equation}$$
$$1.0\left(dram\right)\approx{\color{rgb(20,165,174)} 9.5238 \times 10^{-1}}\left(rebah\right)$$