Convert drop to dash
Learn how to convert
1
drop to
dash
step by step.
Calculation Breakdown
Set up the equation
\(1.0\left(drop\right)={\color{rgb(20,165,174)} x}\left(dash\right)\)
Define the base values of the selected units in relation to the SI unit \(\left(cubic \text{ } meter\right)\)
\(\text{Left side: 1.0 } \left(drop\right) = {\color{rgb(89,182,91)} 9.86564670138889 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 9.86564670138889 \times 10^{-8}\left(m^{3}\right)}\)
\(\text{Right side: 1.0 } \left(dash\right) = {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}\left(m^{3}\right)}\)
Insert known values into the conversion equation to determine \({\color{rgb(20,165,174)} x}\)
\(1.0\left(drop\right)={\color{rgb(20,165,174)} x}\left(dash\right)\)
\(\text{Insert known values } =>\)
\(1.0 \times {\color{rgb(89,182,91)} 9.86564670138889 \times 10^{-8}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}\)
\(\text{Or}\)
\(1.0 \cdot {\color{rgb(89,182,91)} 9.86564670138889 \times 10^{-8}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}\)
\(\text{Cancel SI units}\)
\(1.0 \times {\color{rgb(89,182,91)} 9.86564670138889 \times 10^{-8}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.08057599609375 \times 10^{-7}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}\)
\(\text{Conversion Equation}\)
\(9.86564670138889 \times 10^{-8} = {\color{rgb(20,165,174)} x} \times 3.08057599609375 \times 10^{-7}\)
Cancel factors on both sides
\(\text{Cancel factors}\)
\(9.86564670138889 \times {\color{rgb(255,204,153)} \cancelto{10^{-1}}{10^{-8}}} = {\color{rgb(20,165,174)} x} \times 3.08057599609375 \times {\color{rgb(255,204,153)} \cancel{10^{-7}}}\)
\(\text{Simplify}\)
\(9.86564670138889 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times 3.08057599609375\)
Switch sides
\({\color{rgb(20,165,174)} x} \times 3.08057599609375 = 9.86564670138889 \times 10^{-1}\)
Isolate \({\color{rgb(20,165,174)} x}\)
Multiply both sides by \(\left(\dfrac{1.0}{3.08057599609375}\right)\)
\({\color{rgb(20,165,174)} x} \times 3.08057599609375 \times \dfrac{1.0}{3.08057599609375} = 9.86564670138889 \times 10^{-1} \times \dfrac{1.0}{3.08057599609375}\)
\(\text{Cancel}\)
\({\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.08057599609375}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.08057599609375}}} = 9.86564670138889 \times 10^{-1} \times \dfrac{1.0}{3.08057599609375}\)
\(\text{Simplify}\)
\({\color{rgb(20,165,174)} x} = \dfrac{9.86564670138889 \times 10^{-1}}{3.08057599609375}\)
Solve \({\color{rgb(20,165,174)} x}\)
\({\color{rgb(20,165,174)} x}\approx0.3202533135\approx3.2025 \times 10^{-1}\)
\(\text{Conversion Equation}\)
\(1.0\left(drop\right)\approx{\color{rgb(20,165,174)} 3.2025 \times 10^{-1}}\left(dash\right)\)