# Convert fall to fermi

Learn how to convert 1 fall to fermi step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(fall\right)={\color{rgb(20,165,174)} x}\left(fermi\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(fall\right) = {\color{rgb(89,182,91)} 5.67\left(meter\right)} = {\color{rgb(89,182,91)} 5.67\left(m\right)}$$
$$\text{Right side: 1.0 } \left(fermi\right) = {\color{rgb(125,164,120)} 10^{-15}\left(meter\right)} = {\color{rgb(125,164,120)} 10^{-15}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(fall\right)={\color{rgb(20,165,174)} x}\left(fermi\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 5.67} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-15}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 5.67} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-15}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 5.67} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{-15}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$5.67 = {\color{rgb(20,165,174)} x} \times 10^{-15}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{-15} = 5.67$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{-15}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{-15} \times \dfrac{1.0}{10^{-15}} = 5.67 \times \dfrac{1.0}{10^{-15}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-15}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-15}}}} = 5.67 \times \dfrac{1.0}{10^{-15}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{5.67}{10^{-15}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-15}}\text{ can be rewritten to }10^{15}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{15} \times 5.67$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 5.67 \times 10^{15}$$
$$\text{Conversion Equation}$$
$$1.0\left(fall\right) = {\color{rgb(20,165,174)} 5.67 \times 10^{15}}\left(fermi\right)$$