Learn how to convert 1 flask to barge step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(flask\right)={\color{rgb(20,165,174)} x}\left(barge\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(flask\right) = {\color{rgb(89,182,91)} 34.7\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 34.7\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(barge\right) = {\color{rgb(125,164,120)} 20411.65665\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 20411.65665\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(flask\right)={\color{rgb(20,165,174)} x}\left(barge\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 34.7} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 20411.65665}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 34.7} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 20411.65665} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 34.7} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 20411.65665} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$34.7 = {\color{rgb(20,165,174)} x} \times 20411.65665$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 20411.65665 = 34.7$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{20411.65665}\right)$$
$${\color{rgb(20,165,174)} x} \times 20411.65665 \times \dfrac{1.0}{20411.65665} = 34.7 \times \dfrac{1.0}{20411.65665}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{20411.65665}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{20411.65665}}} = 34.7 \times \dfrac{1.0}{20411.65665}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{34.7}{20411.65665}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.001700009\approx1.7 \times 10^{-3}$$
$$\text{Conversion Equation}$$
$$1.0\left(flask\right)\approx{\color{rgb(20,165,174)} 1.7 \times 10^{-3}}\left(barge\right)$$