# Convert foot / square hour to galileo

Learn how to convert 1 foot / square hour to galileo step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{foot}{square \text{ } hour}\right)={\color{rgb(20,165,174)} x}\left(galileo\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{foot}{square \text{ } hour}\right) = {\color{rgb(89,182,91)} \dfrac{0.3048}{1.296 \times 10^{7}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{0.3048}{1.296 \times 10^{7}}\left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Right side: 1.0 } \left(galileo\right) = {\color{rgb(125,164,120)} 10^{-2}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} 10^{-2}\left(\dfrac{m}{s^{2}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{foot}{square \text{ } hour}\right)={\color{rgb(20,165,174)} x}\left(galileo\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{0.3048}{1.296 \times 10^{7}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-2}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{0.3048}{1.296 \times 10^{7}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-2}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{0.3048}{1.296 \times 10^{7}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{-2}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{0.3048}{1.296 \times 10^{7}} = {\color{rgb(20,165,174)} x} \times 10^{-2}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{-2} = \dfrac{0.3048}{1.296 \times 10^{7}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{-2}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{-2} \times \dfrac{1.0}{10^{-2}} = \dfrac{0.3048}{1.296 \times 10^{7}} \times \dfrac{1.0}{10^{-2}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-2}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-2}}}} = \dfrac{0.3048 \times 1.0}{1.296 \times {\color{rgb(255,204,153)} \cancelto{10^{5}}{10^{7}}} \times {\color{rgb(255,204,153)} \cancel{10^{-2}}}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{0.3048}{1.296 \times 10^{5}}$$
Rewrite equation
$$\dfrac{1.0}{10^{5}}\text{ can be rewritten to }10^{-5}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-5} \times 0.3048}{1.296}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000023519\approx2.3519 \times 10^{-6}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{foot}{square \text{ } hour}\right)\approx{\color{rgb(20,165,174)} 2.3519 \times 10^{-6}}\left(galileo\right)$$