# Convert foot to hao(毫)

Learn how to convert 1 foot to hao(毫) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(foot\right)={\color{rgb(20,165,174)} x}\left(hao(毫)\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(foot\right) = {\color{rgb(89,182,91)} 0.304800609601219\left(meter\right)} = {\color{rgb(89,182,91)} 0.304800609601219\left(m\right)}$$
$$\text{Right side: 1.0 } \left(hao(毫)\right) = {\color{rgb(125,164,120)} 10^{-4}\left(meter\right)} = {\color{rgb(125,164,120)} 10^{-4}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(foot\right)={\color{rgb(20,165,174)} x}\left(hao(毫)\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 0.304800609601219} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-4}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 0.304800609601219} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-4}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 0.304800609601219} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{-4}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$0.304800609601219 = {\color{rgb(20,165,174)} x} \times 10^{-4}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{-4} = 0.304800609601219$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{-4}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{-4} \times \dfrac{1.0}{10^{-4}} = 0.304800609601219 \times \dfrac{1.0}{10^{-4}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-4}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-4}}}} = 0.304800609601219 \times \dfrac{1.0}{10^{-4}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{0.304800609601219}{10^{-4}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-4}}\text{ can be rewritten to }10^{4}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{4} \times 0.304800609601219$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx3048.006096\approx3.048 \times 10^{3}$$
$$\text{Conversion Equation}$$
$$1.0\left(foot\right)\approx{\color{rgb(20,165,174)} 3.048 \times 10^{3}}\left(hao(毫)\right)$$