# Convert foot to point

Learn how to convert 1 foot to point step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(foot\right)={\color{rgb(20,165,174)} x}\left(point\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(foot\right) = {\color{rgb(89,182,91)} 0.3048\left(meter\right)} = {\color{rgb(89,182,91)} 0.3048\left(m\right)}$$
$$\text{Right side: 1.0 } \left(point\right) = {\color{rgb(125,164,120)} 3.75 \times 10^{-4}\left(meter\right)} = {\color{rgb(125,164,120)} 3.75 \times 10^{-4}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(foot\right)={\color{rgb(20,165,174)} x}\left(point\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 0.3048} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.75 \times 10^{-4}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 0.3048} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.75 \times 10^{-4}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 0.3048} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.75 \times 10^{-4}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$0.3048 = {\color{rgb(20,165,174)} x} \times 3.75 \times 10^{-4}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 3.75 \times 10^{-4} = 0.3048$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{3.75 \times 10^{-4}}\right)$$
$${\color{rgb(20,165,174)} x} \times 3.75 \times 10^{-4} \times \dfrac{1.0}{3.75 \times 10^{-4}} = 0.3048 \times \dfrac{1.0}{3.75 \times 10^{-4}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.75}} \times {\color{rgb(99,194,222)} \cancel{10^{-4}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.75}} \times {\color{rgb(99,194,222)} \cancel{10^{-4}}}} = 0.3048 \times \dfrac{1.0}{3.75 \times 10^{-4}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{0.3048}{3.75 \times 10^{-4}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-4}}\text{ can be rewritten to }10^{4}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{4} \times 0.3048}{3.75}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 812.8 = 8.128 \times 10^{2}$$
$$\text{Conversion Equation}$$
$$1.0\left(foot\right) = {\color{rgb(20,165,174)} 8.128 \times 10^{2}}\left(point\right)$$