# Convert franklin to statcoulomb

Learn how to convert 1 franklin to statcoulomb step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(franklin\right)={\color{rgb(20,165,174)} x}\left(statcoulomb\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(coulomb\right)$$
$$\text{Left side: 1.0 } \left(franklin\right) = {\color{rgb(89,182,91)} 3.33564 \times 10^{-10}\left(coulomb\right)} = {\color{rgb(89,182,91)} 3.33564 \times 10^{-10}\left(C\right)}$$
$$\text{Right side: 1.0 } \left(statcoulomb\right) = {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}\left(coulomb\right)} = {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}\left(C\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(franklin\right)={\color{rgb(20,165,174)} x}\left(statcoulomb\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3.33564 \times 10^{-10}} \times {\color{rgb(89,182,91)} \left(coulomb\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}}} \times {\color{rgb(125,164,120)} \left(coulomb\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3.33564 \times 10^{-10}} \cdot {\color{rgb(89,182,91)} \left(C\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}} \cdot {\color{rgb(125,164,120)} \left(C\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3.33564 \times 10^{-10}} \cdot {\color{rgb(89,182,91)} \cancel{\left(C\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.33564 \times 10^{-10}} \times {\color{rgb(125,164,120)} \cancel{\left(C\right)}}$$
$$\text{Conversion Equation}$$
$$3.33564 \times 10^{-10} = {\color{rgb(20,165,174)} x} \times 3.33564 \times 10^{-10}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$${\color{rgb(255,204,153)} \cancel{3.33564}} \times {\color{rgb(99,194,222)} \cancel{10^{-10}}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.33564}} \times {\color{rgb(99,194,222)} \cancel{10^{-10}}}$$
$$\text{Simplify}$$
$$1.0 = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 1.0$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 1$$
$$\text{Conversion Equation}$$
$$1.0\left(franklin\right) = {\color{rgb(20,165,174)} 1}\left(statcoulomb\right)$$

# Other Conversion Examples

### Cookie Policy

PLEASE READ AND ACCEPT OUR COOKIE POLICY.