# Convert go(合) to minim

Learn how to convert 1 go(合) to minim step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(go(合)\right)={\color{rgb(20,165,174)} x}\left(minim\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(go(合)\right) = {\color{rgb(89,182,91)} \dfrac{2401.0}{1.331 \times 10^{7}}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} \dfrac{2401.0}{1.331 \times 10^{7}}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(minim\right) = {\color{rgb(125,164,120)} 6.1611519921875 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 6.1611519921875 \times 10^{-8}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(go(合)\right)={\color{rgb(20,165,174)} x}\left(minim\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2401.0}{1.331 \times 10^{7}}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 6.1611519921875 \times 10^{-8}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{2401.0}{1.331 \times 10^{7}}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 6.1611519921875 \times 10^{-8}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2401.0}{1.331 \times 10^{7}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 6.1611519921875 \times 10^{-8}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{2401.0}{1.331 \times 10^{7}} = {\color{rgb(20,165,174)} x} \times 6.1611519921875 \times 10^{-8}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 6.1611519921875 \times 10^{-8} = \dfrac{2401.0}{1.331 \times 10^{7}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{6.1611519921875 \times 10^{-8}}\right)$$
$${\color{rgb(20,165,174)} x} \times 6.1611519921875 \times 10^{-8} \times \dfrac{1.0}{6.1611519921875 \times 10^{-8}} = \dfrac{2401.0}{1.331 \times 10^{7}} \times \dfrac{1.0}{6.1611519921875 \times 10^{-8}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{6.1611519921875}} \times {\color{rgb(99,194,222)} \cancel{10^{-8}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{6.1611519921875}} \times {\color{rgb(99,194,222)} \cancel{10^{-8}}}} = \dfrac{2401.0 \times 1.0}{1.331 \times {\color{rgb(255,204,153)} \cancel{10^{7}}} \times 6.1611519921875 \times {\color{rgb(255,204,153)} \cancelto{10^{-1}}{10^{-8}}}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2401.0}{1.331 \times 6.1611519921875 \times 10^{-1}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-1}}\text{ can be rewritten to }10$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10.0 \times 2401.0}{1.331 \times 6.1611519921875}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx2927.8726434\approx2.9279 \times 10^{3}$$
$$\text{Conversion Equation}$$
$$1.0\left(go(合)\right)\approx{\color{rgb(20,165,174)} 2.9279 \times 10^{3}}\left(minim\right)$$