# Convert gravity to meter / square second

Learn how to convert 1 gravity to meter / square second step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(gravity\right)={\color{rgb(20,165,174)} x}\left(\dfrac{meter}{square \text{ } second}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Left side: 1.0 } \left(gravity\right) = {\color{rgb(89,182,91)} 9.80665\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} 9.80665\left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{meter}{square \text{ } second}\right) = {\color{rgb(125,164,120)} 1.0\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} 1.0\left(\dfrac{m}{s^{2}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(gravity\right)={\color{rgb(20,165,174)} x}\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 9.80665} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.0}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 9.80665} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.0} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 9.80665} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.0} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}$$
$$\text{Conversion Equation}$$
$$9.80665 = {\color{rgb(20,165,174)} x} \times 1.0$$
$$\text{Simplify}$$
$$9.80665 = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 9.80665$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 9.80665\approx9.8066$$
$$\text{Conversion Equation}$$
$$1.0\left(gravity\right)\approx{\color{rgb(20,165,174)} 9.8066}\left(\dfrac{meter}{square \text{ } second}\right)$$