# Convert gravity to mile / square minute

Learn how to convert 1 gravity to mile / square minute step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(gravity\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mile}{square \text{ } minute}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Left side: 1.0 } \left(gravity\right) = {\color{rgb(89,182,91)} 9.80665\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} 9.80665\left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{mile}{square \text{ } minute}\right) = {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}\left(\dfrac{m}{s^{2}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(gravity\right)={\color{rgb(20,165,174)} x}\left(\dfrac{mile}{square \text{ } minute}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 9.80665} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 9.80665} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 9.80665} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1609.344}{3.6 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}$$
$$\text{Conversion Equation}$$
$$9.80665 = {\color{rgb(20,165,174)} x} \times \dfrac{1609.344}{3.6 \times 10^{3}}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1609.344}{3.6 \times 10^{3}} = 9.80665$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{3.6 \times 10^{3}}{1609.344}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1609.344}{3.6 \times 10^{3}} \times \dfrac{3.6 \times 10^{3}}{1609.344} = 9.80665 \times \dfrac{3.6 \times 10^{3}}{1609.344}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1609.344}} \times {\color{rgb(99,194,222)} \cancel{3.6}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}}}{{\color{rgb(99,194,222)} \cancel{3.6}} \times {\color{rgb(166,218,227)} \cancel{10^{3}}} \times {\color{rgb(255,204,153)} \cancel{1609.344}}} = 9.80665 \times \dfrac{3.6 \times 10^{3}}{1609.344}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{9.80665 \times 3.6 \times 10^{3}}{1609.344}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx21.936851288\approx21.9369$$
$$\text{Conversion Equation}$$
$$1.0\left(gravity\right)\approx{\color{rgb(20,165,174)} 21.9369}\left(\dfrac{mile}{square \text{ } minute}\right)$$