# Convert hour angle to binary radian

Learn how to convert 1 hour angle to binary radian step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(hour \text{ } angle\right)={\color{rgb(20,165,174)} x}\left(binary \text{ } radian\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(radian\right)$$
$$\text{Left side: 1.0 } \left(hour \text{ } angle\right) = {\color{rgb(89,182,91)} \dfrac{π}{12.0}\left(radian\right)} = {\color{rgb(89,182,91)} \dfrac{π}{12.0}\left(rad\right)}$$
$$\text{Right side: 1.0 } \left(binary \text{ } radian\right) = {\color{rgb(125,164,120)} \dfrac{π}{128.0}\left(radian\right)} = {\color{rgb(125,164,120)} \dfrac{π}{128.0}\left(rad\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(hour \text{ } angle\right)={\color{rgb(20,165,174)} x}\left(binary \text{ } radian\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{12.0}} \times {\color{rgb(89,182,91)} \left(radian\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{π}{128.0}}} \times {\color{rgb(125,164,120)} \left(radian\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{π}{12.0}} \cdot {\color{rgb(89,182,91)} \left(rad\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{π}{128.0}} \cdot {\color{rgb(125,164,120)} \left(rad\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{π}{12.0}} \cdot {\color{rgb(89,182,91)} \cancel{\left(rad\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{π}{128.0}} \times {\color{rgb(125,164,120)} \cancel{\left(rad\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{π}{12.0} = {\color{rgb(20,165,174)} x} \times \dfrac{π}{128.0}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{12.0} = {\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{π}}}{128.0}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{128.0} = \dfrac{1.0}{12.0}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{128.0}{1.0}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{128.0} \times \dfrac{128.0}{1.0} = \dfrac{1.0}{12.0} \times \dfrac{128.0}{1.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{128.0}}}{{\color{rgb(99,194,222)} \cancel{128.0}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times 128.0}{12.0 \times {\color{rgb(255,204,153)} \cancel{1.0}}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{128.0}{12.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx10.666666667\approx10.6667$$
$$\text{Conversion Equation}$$
$$1.0\left(hour \text{ } angle\right)\approx{\color{rgb(20,165,174)} 10.6667}\left(binary \text{ } radian\right)$$