# Convert inch / (hour • minute) to gravity

Learn how to convert 1 inch / (hour • minute) to gravity step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{inch}{hour \times minute}\right)={\color{rgb(20,165,174)} x}\left(gravity\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{inch}{hour \times minute}\right) = {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}\left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Right side: 1.0 } \left(gravity\right) = {\color{rgb(125,164,120)} 9.80665\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} 9.80665\left(\dfrac{m}{s^{2}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{inch}{hour \times minute}\right)={\color{rgb(20,165,174)} x}\left(gravity\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 9.80665}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 9.80665} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{0.0254}{2.16 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 9.80665} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{0.0254}{2.16 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times 9.80665$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 9.80665 = \dfrac{0.0254}{2.16 \times 10^{5}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{9.80665}\right)$$
$${\color{rgb(20,165,174)} x} \times 9.80665 \times \dfrac{1.0}{9.80665} = \dfrac{0.0254}{2.16 \times 10^{5}} \times \dfrac{1.0}{9.80665}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{9.80665}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{9.80665}}} = \dfrac{0.0254 \times 1.0}{2.16 \times 10^{5} \times 9.80665}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{0.0254}{2.16 \times 10^{5} \times 9.80665}$$
Rewrite equation
$$\dfrac{1.0}{10^{5}}\text{ can be rewritten to }10^{-5}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-5} \times 0.0254}{2.16 \times 9.80665}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.000000012\approx1.1991 \times 10^{-8}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{inch}{hour \times minute}\right)\approx{\color{rgb(20,165,174)} 1.1991 \times 10^{-8}}\left(gravity\right)$$