# Convert inch / square hour to inch / square second

Learn how to convert 1 inch / square hour to inch / square second step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{inch}{square \text{ } hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{square \text{ } second}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{inch}{square \text{ } hour}\right) = {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}\left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{inch}{square \text{ } second}\right) = {\color{rgb(125,164,120)} 2.54 \times 10^{-2}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} 2.54 \times 10^{-2}\left(\dfrac{m}{s^{2}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{inch}{square \text{ } hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{square \text{ } second}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.54 \times 10^{-2}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.54 \times 10^{-2}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.54 \times 10^{-2}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}} = {\color{rgb(20,165,174)} x} \times 2.54 \times 10^{-2}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{{\color{rgb(255,204,153)} \cancel{2.54}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}}}{1.296 \times 10^{7}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.54}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}}$$
$$\text{Simplify}$$
$$\dfrac{1.0}{1.296 \times 10^{7}} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = \dfrac{1.0}{1.296 \times 10^{7}}$$
Rewrite equation
$$\dfrac{1.0}{10^{7}}\text{ can be rewritten to }10^{-7}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-7}}{1.296}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000000772\approx7.716 \times 10^{-8}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{inch}{square \text{ } hour}\right)\approx{\color{rgb(20,165,174)} 7.716 \times 10^{-8}}\left(\dfrac{inch}{square \text{ } second}\right)$$