# Convert inch / square hour to knot / hour

Learn how to convert 1 inch / square hour to knot / hour step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{inch}{square \text{ } hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{knot}{hour}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{inch}{square \text{ } hour}\right) = {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}\left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{knot}{hour}\right) = {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{m}{s^{2}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{inch}{square \text{ } hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{knot}{hour}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{50.93}{3.564 \times 10^{5}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{7}} = {\color{rgb(20,165,174)} x} \times \dfrac{50.93}{3.564 \times 10^{5}}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{2.54 \times 10^{-2}}{1.296 \times {\color{rgb(255,204,153)} \cancelto{10^{2}}{10^{7}}}} = {\color{rgb(20,165,174)} x} \times \dfrac{50.93}{3.564 \times {\color{rgb(255,204,153)} \cancel{10^{5}}}}$$
$$\text{Simplify}$$
$$\dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{2}} = {\color{rgb(20,165,174)} x} \times \dfrac{50.93}{3.564}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{50.93}{3.564} = \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{2}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{3.564}{50.93}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{50.93}{3.564} \times \dfrac{3.564}{50.93} = \dfrac{2.54 \times 10^{-2}}{1.296 \times 10^{2}} \times \dfrac{3.564}{50.93}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{50.93}} \times {\color{rgb(99,194,222)} \cancel{3.564}}}{{\color{rgb(99,194,222)} \cancel{3.564}} \times {\color{rgb(255,204,153)} \cancel{50.93}}} = \dfrac{2.54 \times 10^{-2} \times 3.564}{1.296 \times 10^{2} \times 50.93}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.54 \times 10^{-2} \times 3.564}{1.296 \times 10^{2} \times 50.93}$$
Rewrite equation
$$\dfrac{1.0}{10^{2}}\text{ can be rewritten to }10^{-2}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-2} \times 2.54 \times 10^{-2} \times 3.564}{1.296 \times 50.93}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-4} \times 2.54 \times 3.564}{1.296 \times 50.93}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000137149\approx1.3715 \times 10^{-5}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{inch}{square \text{ } hour}\right)\approx{\color{rgb(20,165,174)} 1.3715 \times 10^{-5}}\left(\dfrac{knot}{hour}\right)$$