# Convert inch to pica

Learn how to convert 1 inch to pica step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(inch\right)={\color{rgb(20,165,174)} x}\left(pica\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(inch\right) = {\color{rgb(89,182,91)} 2.5400051 \times 10^{-2}\left(meter\right)} = {\color{rgb(89,182,91)} 2.5400051 \times 10^{-2}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(pica\right) = {\color{rgb(125,164,120)} 4.21751764217518 \times 10^{-3}\left(meter\right)} = {\color{rgb(125,164,120)} 4.21751764217518 \times 10^{-3}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(inch\right)={\color{rgb(20,165,174)} x}\left(pica\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.5400051 \times 10^{-2}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 4.21751764217518 \times 10^{-3}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.5400051 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 4.21751764217518 \times 10^{-3}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 2.5400051 \times 10^{-2}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 4.21751764217518 \times 10^{-3}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$2.5400051 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times 4.21751764217518 \times 10^{-3}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$2.5400051 \times {\color{rgb(255,204,153)} \cancel{10^{-2}}} = {\color{rgb(20,165,174)} x} \times 4.21751764217518 \times {\color{rgb(255,204,153)} \cancelto{10^{-1}}{10^{-3}}}$$
$$\text{Simplify}$$
$$2.5400051 = {\color{rgb(20,165,174)} x} \times 4.21751764217518 \times 10^{-1}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 4.21751764217518 \times 10^{-1} = 2.5400051$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{4.21751764217518 \times 10^{-1}}\right)$$
$${\color{rgb(20,165,174)} x} \times 4.21751764217518 \times 10^{-1} \times \dfrac{1.0}{4.21751764217518 \times 10^{-1}} = 2.5400051 \times \dfrac{1.0}{4.21751764217518 \times 10^{-1}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{4.21751764217518}} \times {\color{rgb(99,194,222)} \cancel{10^{-1}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{4.21751764217518}} \times {\color{rgb(99,194,222)} \cancel{10^{-1}}}} = 2.5400051 \times \dfrac{1.0}{4.21751764217518 \times 10^{-1}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.5400051}{4.21751764217518 \times 10^{-1}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-1}}\text{ can be rewritten to }10$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10.0 \times 2.5400051}{4.21751764217518}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx6.0225120924\approx6.0225$$
$$\text{Conversion Equation}$$
$$1.0\left(inch\right)\approx{\color{rgb(20,165,174)} 6.0225}\left(pica\right)$$