# Convert juchart to juchart

Learn how to convert 1 juchart to juchart step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(juchart\right)={\color{rgb(20,165,174)} x}\left(juchart\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(square \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(juchart\right) = {\color{rgb(89,182,91)} 3240.55\left(square \text{ } meter\right)} = {\color{rgb(89,182,91)} 3240.55\left(m^{2}\right)}$$
$$\text{Right side: 1.0 } \left(juchart\right) = {\color{rgb(125,164,120)} 3600.61\left(square \text{ } meter\right)} = {\color{rgb(125,164,120)} 3600.61\left(m^{2}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(juchart\right)={\color{rgb(20,165,174)} x}\left(juchart\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3240.55} \times {\color{rgb(89,182,91)} \left(square \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3600.61}} \times {\color{rgb(125,164,120)} \left(square \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3240.55} \cdot {\color{rgb(89,182,91)} \left(m^{2}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3600.61} \cdot {\color{rgb(125,164,120)} \left(m^{2}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3240.55} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{2}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3600.61} \times {\color{rgb(125,164,120)} \cancel{\left(m^{2}\right)}}$$
$$\text{Conversion Equation}$$
$$3240.55 = {\color{rgb(20,165,174)} x} \times 3600.61$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 3600.61 = 3240.55$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{3600.61}\right)$$
$${\color{rgb(20,165,174)} x} \times 3600.61 \times \dfrac{1.0}{3600.61} = 3240.55 \times \dfrac{1.0}{3600.61}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3600.61}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3600.61}}} = 3240.55 \times \dfrac{1.0}{3600.61}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3240.55}{3600.61}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.9000002777\approx9 \times 10^{-1}$$
$$\text{Conversion Equation}$$
$$1.0\left(juchart\right)\approx{\color{rgb(20,165,174)} 9 \times 10^{-1}}\left(juchart\right)$$