Convert kan(貫) to bag

Learn how to convert 1 kan(貫) to bag step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(kan(貫)\right)={\color{rgb(20,165,174)} x}\left(bag\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(kan(貫)\right) = {\color{rgb(89,182,91)} 3.75\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 3.75\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(bag\right) = {\color{rgb(125,164,120)} 60.0\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 60.0\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(kan(貫)\right)={\color{rgb(20,165,174)} x}\left(bag\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 3.75} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 60.0}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 3.75} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 60.0} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 3.75} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 60.0} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$3.75 = {\color{rgb(20,165,174)} x} \times 60.0$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 60.0 = 3.75$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{60.0}\right)$$
$${\color{rgb(20,165,174)} x} \times 60.0 \times \dfrac{1.0}{60.0} = 3.75 \times \dfrac{1.0}{60.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{60.0}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{60.0}}} = 3.75 \times \dfrac{1.0}{60.0}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3.75}{60.0}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 0.0625 = 6.25 \times 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(kan(貫)\right) = {\color{rgb(20,165,174)} 6.25 \times 10^{-2}}\left(bag\right)$$