# Convert knot / hour to inch / (hour • minute)

Learn how to convert 1 knot / hour to inch / (hour • minute) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{knot}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{hour \times minute}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{knot}{hour}\right) = {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{inch}{hour \times minute}\right) = {\color{rgb(125,164,120)} \dfrac{0.0254}{2.16 \times 10^{5}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} \dfrac{0.0254}{2.16 \times 10^{5}}\left(\dfrac{m}{s^{2}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{knot}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{hour \times minute}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{0.0254}{2.16 \times 10^{5}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{0.0254}{2.16 \times 10^{5}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{0.0254}{2.16 \times 10^{5}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{50.93}{3.564 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times \dfrac{0.0254}{2.16 \times 10^{5}}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{50.93}{3.564 \times {\color{rgb(255,204,153)} \cancel{10^{5}}}} = {\color{rgb(20,165,174)} x} \times \dfrac{0.0254}{2.16 \times {\color{rgb(255,204,153)} \cancel{10^{5}}}}$$
$$\text{Simplify}$$
$$\dfrac{50.93}{3.564} = {\color{rgb(20,165,174)} x} \times \dfrac{0.0254}{2.16}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{0.0254}{2.16} = \dfrac{50.93}{3.564}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{2.16}{0.0254}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{0.0254}{2.16} \times \dfrac{2.16}{0.0254} = \dfrac{50.93}{3.564} \times \dfrac{2.16}{0.0254}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{0.0254}} \times {\color{rgb(99,194,222)} \cancel{2.16}}}{{\color{rgb(99,194,222)} \cancel{2.16}} \times {\color{rgb(255,204,153)} \cancel{0.0254}}} = \dfrac{50.93 \times 2.16}{3.564 \times 0.0254}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{50.93 \times 2.16}{3.564 \times 0.0254}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx1215.2230971\approx1.2152 \times 10^{3}$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{knot}{hour}\right)\approx{\color{rgb(20,165,174)} 1.2152 \times 10^{3}}\left(\dfrac{inch}{hour \times minute}\right)$$