# Convert knot / hour to inch / (hour • second)

Learn how to convert 1 knot / hour to inch / (hour • second) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(\dfrac{knot}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{hour \times second}\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(\dfrac{meter}{square \text{ } second}\right)$$
$$\text{Left side: 1.0 } \left(\dfrac{knot}{hour}\right) = {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}\left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Right side: 1.0 } \left(\dfrac{inch}{hour \times second}\right) = {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}\left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}\left(\dfrac{m}{s^{2}}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(\dfrac{knot}{hour}\right)={\color{rgb(20,165,174)} x}\left(\dfrac{inch}{hour \times second}\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}} \times {\color{rgb(89,182,91)} \left(\dfrac{meter}{square \text{ } second}\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}}} \times {\color{rgb(125,164,120)} \left(\dfrac{meter}{square \text{ } second}\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \left(\dfrac{m}{s^{2}}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}} \cdot {\color{rgb(125,164,120)} \left(\dfrac{m}{s^{2}}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{50.93}{3.564 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left(\dfrac{m}{s^{2}}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}} \times {\color{rgb(125,164,120)} \cancel{\left(\dfrac{m}{s^{2}}\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{50.93}{3.564 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{3.6 \times 10^{3}}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$\dfrac{50.93}{3.564 \times {\color{rgb(255,204,153)} \cancelto{10^{2}}{10^{5}}}} = {\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{3.6 \times {\color{rgb(255,204,153)} \cancel{10^{3}}}}$$
$$\text{Simplify}$$
$$\dfrac{50.93}{3.564 \times 10^{2}} = {\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{3.6}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{3.6} = \dfrac{50.93}{3.564 \times 10^{2}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{3.6}{2.54 \times 10^{-2}}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{2.54 \times 10^{-2}}{3.6} \times \dfrac{3.6}{2.54 \times 10^{-2}} = \dfrac{50.93}{3.564 \times 10^{2}} \times \dfrac{3.6}{2.54 \times 10^{-2}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{2.54}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}} \times {\color{rgb(166,218,227)} \cancel{3.6}}}{{\color{rgb(166,218,227)} \cancel{3.6}} \times {\color{rgb(255,204,153)} \cancel{2.54}} \times {\color{rgb(99,194,222)} \cancel{10^{-2}}}} = \dfrac{50.93 \times 3.6}{3.564 \times {\color{rgb(255,204,153)} \cancel{10^{2}}} \times 2.54 \times {\color{rgb(255,204,153)} \cancel{10^{-2}}}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{50.93 \times 3.6}{3.564 \times 2.54}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx20.253718285\approx20.2537$$
$$\text{Conversion Equation}$$
$$1.0\left(\dfrac{knot}{hour}\right)\approx{\color{rgb(20,165,174)} 20.2537}\left(\dfrac{inch}{hour \times second}\right)$$