# Convert last to register ton

Learn how to convert 1 last to register ton step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(last\right)={\color{rgb(20,165,174)} x}\left(register \text{ } ton\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(last\right) = {\color{rgb(89,182,91)} 2.9094976\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 2.9094976\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(register \text{ } ton\right) = {\color{rgb(125,164,120)} 2.8316846592\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 2.8316846592\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(last\right)={\color{rgb(20,165,174)} x}\left(register \text{ } ton\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.9094976} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 2.8316846592}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.9094976} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 2.8316846592} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 2.9094976} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 2.8316846592} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$2.9094976 = {\color{rgb(20,165,174)} x} \times 2.8316846592$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 2.8316846592 = 2.9094976$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{2.8316846592}\right)$$
$${\color{rgb(20,165,174)} x} \times 2.8316846592 \times \dfrac{1.0}{2.8316846592} = 2.9094976 \times \dfrac{1.0}{2.8316846592}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{2.8316846592}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{2.8316846592}}} = 2.9094976 \times \dfrac{1.0}{2.8316846592}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.9094976}{2.8316846592}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx1.0274793807\approx1.0275$$
$$\text{Conversion Equation}$$
$$1.0\left(last\right)\approx{\color{rgb(20,165,174)} 1.0275}\left(register \text{ } ton\right)$$