# Convert minim to sheng(市升)

Learn how to convert 1 minim to sheng(市升) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(minim\right)={\color{rgb(20,165,174)} x}\left(sheng(市升)\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(minim\right) = {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(sheng(市升)\right) = {\color{rgb(125,164,120)} 10^{-3}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 10^{-3}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(minim\right)={\color{rgb(20,165,174)} x}\left(sheng(市升)\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-3}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-3}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 6.1611519921875 \times 10^{-8}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{-3}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$6.1611519921875 \times 10^{-8} = {\color{rgb(20,165,174)} x} \times 10^{-3}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$6.1611519921875 \times {\color{rgb(255,204,153)} \cancelto{10^{-5}}{10^{-8}}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-3}}}$$
$$\text{Simplify}$$
$$6.1611519921875 \times 10^{-5} = {\color{rgb(20,165,174)} x}$$
Switch sides
$${\color{rgb(20,165,174)} x} = 6.1611519921875 \times 10^{-5}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000616115\approx6.1612 \times 10^{-5}$$
$$\text{Conversion Equation}$$
$$1.0\left(minim\right)\approx{\color{rgb(20,165,174)} 6.1612 \times 10^{-5}}\left(sheng(市升)\right)$$