# Convert mite to bag

Learn how to convert 1 mite to bag step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(mite\right)={\color{rgb(20,165,174)} x}\left(bag\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(mite\right) = {\color{rgb(89,182,91)} 5.0 \times 10^{-5}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 5.0 \times 10^{-5}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(bag\right) = {\color{rgb(125,164,120)} 42.63768278\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 42.63768278\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(mite\right)={\color{rgb(20,165,174)} x}\left(bag\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 5.0 \times 10^{-5}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 42.63768278}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 5.0 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 42.63768278} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 5.0 \times 10^{-5}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 42.63768278} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$5.0 \times 10^{-5} = {\color{rgb(20,165,174)} x} \times 42.63768278$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 42.63768278 = 5.0 \times 10^{-5}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{42.63768278}\right)$$
$${\color{rgb(20,165,174)} x} \times 42.63768278 \times \dfrac{1.0}{42.63768278} = 5.0 \times 10^{-5} \times \dfrac{1.0}{42.63768278}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{42.63768278}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{42.63768278}}} = 5.0 \times 10^{-5} \times \dfrac{1.0}{42.63768278}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{5.0 \times 10^{-5}}{42.63768278}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0000011727\approx1.1727 \times 10^{-6}$$
$$\text{Conversion Equation}$$
$$1.0\left(mite\right)\approx{\color{rgb(20,165,174)} 1.1727 \times 10^{-6}}\left(bag\right)$$