# Convert mo(毛) to slug

Learn how to convert 1 mo(毛) to slug step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(mo(毛)\right)={\color{rgb(20,165,174)} x}\left(slug\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(mo(毛)\right) = {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{5}}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{5}}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(slug\right) = {\color{rgb(125,164,120)} 14.5920665429\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 14.5920665429\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(mo(毛)\right)={\color{rgb(20,165,174)} x}\left(slug\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{5}}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 14.5920665429}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 14.5920665429} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} \dfrac{3.0}{8.0 \times 10^{5}}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 14.5920665429} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$\dfrac{3.0}{8.0 \times 10^{5}} = {\color{rgb(20,165,174)} x} \times 14.5920665429$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 14.5920665429 = \dfrac{3.0}{8.0 \times 10^{5}}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{14.5920665429}\right)$$
$${\color{rgb(20,165,174)} x} \times 14.5920665429 \times \dfrac{1.0}{14.5920665429} = \dfrac{3.0}{8.0 \times 10^{5}} \times \dfrac{1.0}{14.5920665429}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{14.5920665429}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{14.5920665429}}} = \dfrac{3.0 \times 1.0}{8.0 \times 10^{5} \times 14.5920665429}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{3.0}{8.0 \times 10^{5} \times 14.5920665429}$$
Rewrite equation
$$\dfrac{1.0}{10^{5}}\text{ can be rewritten to }10^{-5}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{-5} \times 3.0}{8.0 \times 14.5920665429}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.000000257\approx2.5699 \times 10^{-7}$$
$$\text{Conversion Equation}$$
$$1.0\left(mo(毛)\right)\approx{\color{rgb(20,165,174)} 2.5699 \times 10^{-7}}\left(slug\right)$$