# Convert myriameter to fen(市分)

Learn how to convert 1 myriameter to fen(市分) step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(myriameter\right)={\color{rgb(20,165,174)} x}\left(fen(市分)\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(meter\right)$$
$$\text{Left side: 1.0 } \left(myriameter\right) = {\color{rgb(89,182,91)} 10^{4}\left(meter\right)} = {\color{rgb(89,182,91)} 10^{4}\left(m\right)}$$
$$\text{Right side: 1.0 } \left(fen(市分)\right) = {\color{rgb(125,164,120)} \dfrac{1.0}{3.0 \times 10^{2}}\left(meter\right)} = {\color{rgb(125,164,120)} \dfrac{1.0}{3.0 \times 10^{2}}\left(m\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(myriameter\right)={\color{rgb(20,165,174)} x}\left(fen(市分)\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{4}} \times {\color{rgb(89,182,91)} \left(meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} \dfrac{1.0}{3.0 \times 10^{2}}}} \times {\color{rgb(125,164,120)} \left(meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{4}} \cdot {\color{rgb(89,182,91)} \left(m\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} \dfrac{1.0}{3.0 \times 10^{2}}} \cdot {\color{rgb(125,164,120)} \left(m\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{4}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} \dfrac{1.0}{3.0 \times 10^{2}}} \times {\color{rgb(125,164,120)} \cancel{\left(m\right)}}$$
$$\text{Conversion Equation}$$
$$10^{4} = {\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.0 \times 10^{2}}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.0 \times 10^{2}} = 10^{4}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{3.0 \times 10^{2}}{1.0}\right)$$
$${\color{rgb(20,165,174)} x} \times \dfrac{1.0}{3.0 \times 10^{2}} \times \dfrac{3.0 \times 10^{2}}{1.0} = 10^{4} \times \dfrac{3.0 \times 10^{2}}{1.0}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times \dfrac{{\color{rgb(255,204,153)} \cancel{1.0}} \times {\color{rgb(99,194,222)} \cancel{3.0}} \times {\color{rgb(166,218,227)} \cancel{10^{2}}}}{{\color{rgb(99,194,222)} \cancel{3.0}} \times {\color{rgb(166,218,227)} \cancel{10^{2}}} \times {\color{rgb(255,204,153)} \cancel{1.0}}} = 10^{4} \times \dfrac{3.0 \times 10^{2}}{1.0}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = 10^{4} \times 3.0 \times 10^{2}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 3000000 = 3 \times 10^{6}$$
$$\text{Conversion Equation}$$
$$1.0\left(myriameter\right) = {\color{rgb(20,165,174)} 3 \times 10^{6}}\left(fen(市分)\right)$$