# Convert pint to gill

Learn how to convert 1 pint to gill step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(pint\right)={\color{rgb(20,165,174)} x}\left(gill\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(pint\right) = {\color{rgb(89,182,91)} 4.73176473 \times 10^{-4}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 4.73176473 \times 10^{-4}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(gill\right) = {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(pint\right)={\color{rgb(20,165,174)} x}\left(gill\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 4.73176473 \times 10^{-4}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 4.73176473 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 4.73176473 \times 10^{-4}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 1.1829411825 \times 10^{-4}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$4.73176473 \times 10^{-4} = {\color{rgb(20,165,174)} x} \times 1.1829411825 \times 10^{-4}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$4.73176473 \times {\color{rgb(255,204,153)} \cancel{10^{-4}}} = {\color{rgb(20,165,174)} x} \times 1.1829411825 \times {\color{rgb(255,204,153)} \cancel{10^{-4}}}$$
$$\text{Simplify}$$
$$4.73176473 = {\color{rgb(20,165,174)} x} \times 1.1829411825$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 1.1829411825 = 4.73176473$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{1.1829411825}\right)$$
$${\color{rgb(20,165,174)} x} \times 1.1829411825 \times \dfrac{1.0}{1.1829411825} = 4.73176473 \times \dfrac{1.0}{1.1829411825}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{1.1829411825}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{1.1829411825}}} = 4.73176473 \times \dfrac{1.0}{1.1829411825}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{4.73176473}{1.1829411825}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x} = 4$$
$$\text{Conversion Equation}$$
$$1.0\left(pint\right) = {\color{rgb(20,165,174)} 4}\left(gill\right)$$