Convert pond to poundal

Learn how to convert 1 pond to poundal step by step.

Calculation Breakdown

Set up the equation
$$1.0\left(pond\right)={\color{rgb(20,165,174)} x}\left(poundal\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(newton\right)$$
$$\text{Left side: 1.0 } \left(pond\right) = {\color{rgb(89,182,91)} 9.80665 \times 10^{-3}\left(newton\right)} = {\color{rgb(89,182,91)} 9.80665 \times 10^{-3}\left(N\right)}$$
$$\text{Right side: 1.0 } \left(poundal\right) = {\color{rgb(125,164,120)} 0.138254954376\left(newton\right)} = {\color{rgb(125,164,120)} 0.138254954376\left(N\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(pond\right)={\color{rgb(20,165,174)} x}\left(poundal\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 9.80665 \times 10^{-3}} \times {\color{rgb(89,182,91)} \left(newton\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 0.138254954376}} \times {\color{rgb(125,164,120)} \left(newton\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 9.80665 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \left(N\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 0.138254954376} \cdot {\color{rgb(125,164,120)} \left(N\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 9.80665 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \cancel{\left(N\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 0.138254954376} \times {\color{rgb(125,164,120)} \cancel{\left(N\right)}}$$
$$\text{Conversion Equation}$$
$$9.80665 \times 10^{-3} = {\color{rgb(20,165,174)} x} \times 0.138254954376$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 0.138254954376 = 9.80665 \times 10^{-3}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{0.138254954376}\right)$$
$${\color{rgb(20,165,174)} x} \times 0.138254954376 \times \dfrac{1.0}{0.138254954376} = 9.80665 \times 10^{-3} \times \dfrac{1.0}{0.138254954376}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{0.138254954376}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{0.138254954376}}} = 9.80665 \times 10^{-3} \times \dfrac{1.0}{0.138254954376}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{9.80665 \times 10^{-3}}{0.138254954376}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0709316353\approx7.0932 \times 10^{-2}$$
$$\text{Conversion Equation}$$
$$1.0\left(pond\right)\approx{\color{rgb(20,165,174)} 7.0932 \times 10^{-2}}\left(poundal\right)$$