# Convert poundal to dyne

Learn how to convert 1 poundal to dyne step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(poundal\right)={\color{rgb(20,165,174)} x}\left(dyne\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(newton\right)$$
$$\text{Left side: 1.0 } \left(poundal\right) = {\color{rgb(89,182,91)} 0.138254954376\left(newton\right)} = {\color{rgb(89,182,91)} 0.138254954376\left(N\right)}$$
$$\text{Right side: 1.0 } \left(dyne\right) = {\color{rgb(125,164,120)} 10^{-5}\left(newton\right)} = {\color{rgb(125,164,120)} 10^{-5}\left(N\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(poundal\right)={\color{rgb(20,165,174)} x}\left(dyne\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 0.138254954376} \times {\color{rgb(89,182,91)} \left(newton\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 10^{-5}}} \times {\color{rgb(125,164,120)} \left(newton\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 0.138254954376} \cdot {\color{rgb(89,182,91)} \left(N\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 10^{-5}} \cdot {\color{rgb(125,164,120)} \left(N\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 0.138254954376} \cdot {\color{rgb(89,182,91)} \cancel{\left(N\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 10^{-5}} \times {\color{rgb(125,164,120)} \cancel{\left(N\right)}}$$
$$\text{Conversion Equation}$$
$$0.138254954376 = {\color{rgb(20,165,174)} x} \times 10^{-5}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 10^{-5} = 0.138254954376$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{10^{-5}}\right)$$
$${\color{rgb(20,165,174)} x} \times 10^{-5} \times \dfrac{1.0}{10^{-5}} = 0.138254954376 \times \dfrac{1.0}{10^{-5}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{10^{-5}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{10^{-5}}}} = 0.138254954376 \times \dfrac{1.0}{10^{-5}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{0.138254954376}{10^{-5}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-5}}\text{ can be rewritten to }10^{5}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = 10^{5} \times 0.138254954376$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx13825.495438\approx1.3825 \times 10^{4}$$
$$\text{Conversion Equation}$$
$$1.0\left(poundal\right)\approx{\color{rgb(20,165,174)} 1.3825 \times 10^{4}}\left(dyne\right)$$