Learn how to convert 1 quart to hogshead step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(quart\right)={\color{rgb(20,165,174)} x}\left(hogshead\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(quart\right) = {\color{rgb(89,182,91)} 1.1365225 \times 10^{-3}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 1.1365225 \times 10^{-3}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(hogshead\right) = {\color{rgb(125,164,120)} 3.2731848 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 3.2731848 \times 10^{-1}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(quart\right)={\color{rgb(20,165,174)} x}\left(hogshead\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 1.1365225 \times 10^{-3}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.2731848 \times 10^{-1}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 1.1365225 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.2731848 \times 10^{-1}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 1.1365225 \times 10^{-3}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.2731848 \times 10^{-1}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$1.1365225 \times 10^{-3} = {\color{rgb(20,165,174)} x} \times 3.2731848 \times 10^{-1}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$1.1365225 \times {\color{rgb(255,204,153)} \cancelto{10^{-2}}{10^{-3}}} = {\color{rgb(20,165,174)} x} \times 3.2731848 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}}$$
$$\text{Simplify}$$
$$1.1365225 \times 10^{-2} = {\color{rgb(20,165,174)} x} \times 3.2731848$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 3.2731848 = 1.1365225 \times 10^{-2}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{3.2731848}\right)$$
$${\color{rgb(20,165,174)} x} \times 3.2731848 \times \dfrac{1.0}{3.2731848} = 1.1365225 \times 10^{-2} \times \dfrac{1.0}{3.2731848}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.2731848}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.2731848}}} = 1.1365225 \times 10^{-2} \times \dfrac{1.0}{3.2731848}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{1.1365225 \times 10^{-2}}{3.2731848}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx0.0034722222\approx3.4722 \times 10^{-3}$$
$$\text{Conversion Equation}$$
$$1.0\left(quart\right)\approx{\color{rgb(20,165,174)} 3.4722 \times 10^{-3}}\left(hogshead\right)$$