# Convert quarter to quart

Learn how to convert 1 quarter to quart step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(quarter\right)={\color{rgb(20,165,174)} x}\left(quart\right)$$
Define the base values of the selected units in relation to the SI unit $$\left(cubic \text{ } meter\right)$$
$$\text{Left side: 1.0 } \left(quarter\right) = {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}\left(cubic \text{ } meter\right)} = {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}\left(m^{3}\right)}$$
$$\text{Right side: 1.0 } \left(quart\right) = {\color{rgb(125,164,120)} 9.46352946 \times 10^{-4}\left(cubic \text{ } meter\right)} = {\color{rgb(125,164,120)} 9.46352946 \times 10^{-4}\left(m^{3}\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(quarter\right)={\color{rgb(20,165,174)} x}\left(quart\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}} \times {\color{rgb(89,182,91)} \left(cubic \text{ } meter\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 9.46352946 \times 10^{-4}}} \times {\color{rgb(125,164,120)} \left(cubic \text{ } meter\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \left(m^{3}\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 9.46352946 \times 10^{-4}} \cdot {\color{rgb(125,164,120)} \left(m^{3}\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 2.9094976 \times 10^{-1}} \cdot {\color{rgb(89,182,91)} \cancel{\left(m^{3}\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 9.46352946 \times 10^{-4}} \times {\color{rgb(125,164,120)} \cancel{\left(m^{3}\right)}}$$
$$\text{Conversion Equation}$$
$$2.9094976 \times 10^{-1} = {\color{rgb(20,165,174)} x} \times 9.46352946 \times 10^{-4}$$
Cancel factors on both sides
$$\text{Cancel factors}$$
$$2.9094976 \times {\color{rgb(255,204,153)} \cancel{10^{-1}}} = {\color{rgb(20,165,174)} x} \times 9.46352946 \times {\color{rgb(255,204,153)} \cancelto{10^{-3}}{10^{-4}}}$$
$$\text{Simplify}$$
$$2.9094976 = {\color{rgb(20,165,174)} x} \times 9.46352946 \times 10^{-3}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 9.46352946 \times 10^{-3} = 2.9094976$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{9.46352946 \times 10^{-3}}\right)$$
$${\color{rgb(20,165,174)} x} \times 9.46352946 \times 10^{-3} \times \dfrac{1.0}{9.46352946 \times 10^{-3}} = 2.9094976 \times \dfrac{1.0}{9.46352946 \times 10^{-3}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{9.46352946}} \times {\color{rgb(99,194,222)} \cancel{10^{-3}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{9.46352946}} \times {\color{rgb(99,194,222)} \cancel{10^{-3}}}} = 2.9094976 \times \dfrac{1.0}{9.46352946 \times 10^{-3}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{2.9094976}{9.46352946 \times 10^{-3}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-3}}\text{ can be rewritten to }10^{3}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{3} \times 2.9094976}{9.46352946}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx307.44318093\approx3.0744 \times 10^{2}$$
$$\text{Conversion Equation}$$
$$1.0\left(quarter\right)\approx{\color{rgb(20,165,174)} 3.0744 \times 10^{2}}\left(quart\right)$$