# Convert quintal to mite

Learn how to convert 1 quintal to mite step by step.

## Calculation Breakdown

Set up the equation
$$1.0\left(quintal\right)={\color{rgb(20,165,174)} x}\left(mite\right)$$
Define the base values of the selected units in relation to the SI unit $$\left({\color{rgb(230,179,255)} kilo}gram\right)$$
$$\text{Left side: 1.0 } \left(quintal\right) = {\color{rgb(89,182,91)} 10^{2}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(89,182,91)} 10^{2}\left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Right side: 1.0 } \left(mite\right) = {\color{rgb(125,164,120)} 3.2399455 \times 10^{-6}\left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(125,164,120)} 3.2399455 \times 10^{-6}\left({\color{rgb(230,179,255)} k}g\right)}$$
Insert known values into the conversion equation to determine $${\color{rgb(20,165,174)} x}$$
$$1.0\left(quintal\right)={\color{rgb(20,165,174)} x}\left(mite\right)$$
$$\text{Insert known values } =>$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{2}} \times {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} kilo}gram\right)} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} {\color{rgb(125,164,120)} 3.2399455 \times 10^{-6}}} \times {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} kilo}gram\right)}$$
$$\text{Or}$$
$$1.0 \cdot {\color{rgb(89,182,91)} 10^{2}} \cdot {\color{rgb(89,182,91)} \left({\color{rgb(230,179,255)} k}g\right)} = {\color{rgb(20,165,174)} x} \cdot {\color{rgb(125,164,120)} 3.2399455 \times 10^{-6}} \cdot {\color{rgb(125,164,120)} \left({\color{rgb(230,179,255)} k}g\right)}$$
$$\text{Cancel SI units}$$
$$1.0 \times {\color{rgb(89,182,91)} 10^{2}} \cdot {\color{rgb(89,182,91)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}} = {\color{rgb(20,165,174)} x} \times {\color{rgb(125,164,120)} 3.2399455 \times 10^{-6}} \times {\color{rgb(125,164,120)} \cancel{\left({\color{rgb(230,179,255)} k}g\right)}}$$
$$\text{Conversion Equation}$$
$$10^{2} = {\color{rgb(20,165,174)} x} \times 3.2399455 \times 10^{-6}$$
Switch sides
$${\color{rgb(20,165,174)} x} \times 3.2399455 \times 10^{-6} = 10^{2}$$
Isolate $${\color{rgb(20,165,174)} x}$$
Multiply both sides by $$\left(\dfrac{1.0}{3.2399455 \times 10^{-6}}\right)$$
$${\color{rgb(20,165,174)} x} \times 3.2399455 \times 10^{-6} \times \dfrac{1.0}{3.2399455 \times 10^{-6}} = 10^{2} \times \dfrac{1.0}{3.2399455 \times 10^{-6}}$$
$$\text{Cancel}$$
$${\color{rgb(20,165,174)} x} \times {\color{rgb(255,204,153)} \cancel{3.2399455}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}} \times \dfrac{1.0}{{\color{rgb(255,204,153)} \cancel{3.2399455}} \times {\color{rgb(99,194,222)} \cancel{10^{-6}}}} = 10^{2} \times \dfrac{1.0}{3.2399455 \times 10^{-6}}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{2}}{3.2399455 \times 10^{-6}}$$
Rewrite equation
$$\dfrac{1.0}{10^{-6}}\text{ can be rewritten to }10^{6}$$
$$\text{Rewrite}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{6} \times 10^{2}}{3.2399455}$$
$$\text{Simplify}$$
$${\color{rgb(20,165,174)} x} = \dfrac{10^{8}}{3.2399455}$$
Solve $${\color{rgb(20,165,174)} x}$$
$${\color{rgb(20,165,174)} x}\approx30864716.706\approx3.0865 \times 10^{7}$$
$$\text{Conversion Equation}$$
$$1.0\left(quintal\right)\approx{\color{rgb(20,165,174)} 3.0865 \times 10^{7}}\left(mite\right)$$